Atomistic Simulation of Phonon-Assisted Tunneling in Bulk-like Esaki Diodes

نویسندگان

  • Reto Rhyner
  • Mathieu Luisier
  • Andreas Schenk
چکیده

To correctly describe band-to-band tunneling in semiconductor materials with an indirect band gap like silicon electron-phonon scattering must be taken into account. However, combining electron-phonon scattering and an atomistic full-band basis, as needed in nanoscale device simulations, is a real challenge from a computational and theoretical point of view. We have developed a quantum transport solver that can fulfill this requirement for realistic quantum well and nanowire structures. Transport in bulk-like tunneling diodes, the basic elements of tunneling FETs, for which several experimental data are available, could only be modeled ballistically so far. Hence, we present in this paper a first validation of electronphonon interaction in an atomistic full-band basis for bulklike structures by means of simulations of phonon-assisted band-to-band tunneling currents in Esaki diodes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Nanowire Tunneling Transistors: From the Wentzel-Kramers-Brillouin Approximation to Full-Band Phonon-Assisted Tunneling

Nanowire band-to-band tunneling field-effect transistors ͑TFETs͒ are simulated using the Wentzel– Kramers–Brillouin ͑WKB͒ approximation and an atomistic, full-band quantum transport solver including direct and phonon-assisted tunneling ͑PAT͒. It is found that the WKB approximation properly works if one single imaginary path connecting the valence band ͑VB͒ and the conduction band ͑CB͒ dominates the tunne...

متن کامل

Model for band-edge electroluminescence from metal–oxide–semiconductor silicon tunneling diodes

A detailed model is proposed to explain the electroluminescence spectrum from metal–oxide– silicon tunneling diodes. This model includes phonon-assisted processes and exciton involvement. According to this model, the main peak and the low-energy tail of the electroluminescence spectrum are attributed to the transverse optical phonon and the two-phonon assisted recombination, respectively. With ...

متن کامل

Silicon nanowire Esaki diodes.

We report on the fabrication and characterization of silicon nanowire tunnel diodes. The silicon nanowires were grown on p-type Si substrates using Au-catalyzed vapor-liquid-solid growth and in situ n-type doping. Electrical measurements reveal Esaki diode characteristics with peak current densities of 3.6 kA/cm(2), peak-to-valley current ratios of up to 4.3, and reverse current densities of up...

متن کامل

Scattering in Si-Nanowires - Where Does it Matter?

Electron transport is computed in 3nm Si nanowires subject to incoherent scattering from phonons. The electronic structure of the nanowire is represented in an atomistic sp3d5s* tight binding basis. Phonon modes are computed in an atomistic valence force field rather than a continuum deformation potential. Atomistic transport and incoherent scattering are coupled through the non-equilibrium Gre...

متن کامل

Fractional Derivative Phenomenology of Percolative Phonon-Assisted Hopping in Two-Dimensional Disordered Systems

Anomalous advection-diffusion in two-dimensional semiconductor systems with coexisting energetic and structural disorder is described in the framework of a generalized model of multiple trapping on a comb-like structure. The basic equations of the model contain fractional-order derivatives. To validate the model, we compare analytical solutions with results of a Monte Carlo simulation of phonon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012